(初中数学竞赛试题)初中奥数竞赛题

初中数学竞赛试题:探索初中奥数竞赛的奥秘

在初中学习的广阔天地里,数学作为一门基础而充满魅力的学科,总以其独特的逻辑之美吸引着无数学子。其中,初中数学竞赛试题,尤其是初中奥数竞赛题,更是成为了许多学生挑战的巅峰,它们以深邃的思考、精巧的构造和独特的解法,引领着学生们在数学的海洋里遨游。今天,让我们一起走进初中奥数竞赛的世界,探索那些令人着迷的题目背后的奥秘。

一、奥数竞赛:思维的磨砺场

奥数竞赛不仅仅是对于数学公式的熟练掌握,更是对逻辑思维、创新能力和问题解决能力的一次全面考验。每一道奥数题目都如同一个精心设计的迷宫,需要学生们运用所学的数学知识,结合巧妙的思考,才能找到通往正确答案的钥匙。在这个过程中,学生们学会了如何在复杂的问题面前保持冷静,如何运用逆向思维、分类讨论等方法,将看似无解的问题一一化解。

二、题目解析:深入浅出的智慧

初中奥数竞赛题往往具有高度的抽象性和概括性,它们将生活中的实际问题抽象为数学模型,要求学生们在理解题意的基础上,进行深入的剖析和推理。例如,一道关于几何图形的题目,可能会涉及到图形的相似、全等、面积计算等多个知识点,学生们需要综合运用这些知识,结合图形的变换和性质,才能找到解题的关键。而代数题目则更加注重逻辑推导和运算技巧,学生们需要学会如何利用已知条件,通过逐步推导,得出最终的答案。

在解析这些题目时,学生们不仅要掌握扎实的基础知识,更要学会如何灵活运用这些知识,将它们转化为解决问题的有力武器。这一过程,不仅是对数学知识的巩固和提升,更是对思维方式和解题策略的锻炼和升华。

三、竞赛意义:超越分数的成长

参加初中奥数竞赛,对于学生们而言,不仅仅是为了获得一个优异的成绩或名次,更重要的是在这个过程中获得的成长和收获。在准备竞赛的过程中,学生们需要不断挑战自己的极限,克服一个又一个的难题,这种经历将极大地增强他们的自信心和毅力。同时,通过与来自不同地区、不同学校的优秀选手的交流和学习,学生们可以拓宽自己的视野,了解更多的解题方法和思路,从而进一步提升自己的数学素养。

此外,奥数竞赛还能够培养学生们的团队合作精神和竞争意识。在团队比赛中,学生们需要学会如何与他人协作,共同解决问题;而在个人比赛中,学生们则需要学会如何在紧张的氛围中保持冷静,发挥出自己的最佳水平。这些经历将对学生们的未来发展产生深远的影响。

四、结语:开启数学之门的钥匙

回望初中奥数竞赛的历程,我们不难发现,这些看似复杂的题目背后,其实隐藏着对孩子们思维能力和创新能力的深度培养。通过不断地挑战和探索,学生们不仅在数学领域取得了显著的进步,更在性格塑造、团队合作等方面获得了宝贵的经验。因此,可以说初中奥数竞赛题是一把开启数学之门的钥匙,它引领着学生们在知识的海洋中不断探索和前行。

未来无论学生们走向何方,这段充满挑战与收获的竞赛经历都将成为他们人生旅途中一道亮丽的风景线。让我们期待更多的孩子能够在初中奥数竞赛的舞台上绽放光彩,用自己的智慧和勇气书写属于自己的辉煌篇章。

初中奥数试题精选及答案【5篇】

【 #初中奥数# 导语】奥数能够有效地培养学生用数学观点看待和处理实际问题的能力,提高学生用数学语言和模型解决实际问题的意识和能力,提高学生揭示实际问题中隐含的数学概念及其关系的能力等等。使学生能够在创造性思维过程中,看到数学的实际作用,感受到数学的魅力,增强学生对数学美的感受力。下面是 考 网分享的初中奥数试题精选及答案【5篇】。欢迎阅读参考!

1.初中奥数试题精选及答案

1.学校组织两个课外兴趣小组去郊外活动。第一小组每小时走4.5千米,第二小组每小时行3.5千米。两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。多长时间能追上第二小组

想:第一小组停下来参观果园时间,第二小组多行了[3.5-(4.5-3.5)]千米,也就是第一组要追赶的路程。又知第一组每小时比第二组快(4.5-3.5)千米,由此便可求出追赶的时间。

解:第一组追赶第二组的路程:

3.5-(4.5-3.5)=3.5-1=2.5(千米)

第一组追赶第二组所用时间:

2.5÷(4.5-3.5)=2.5÷1=2.5(小时)

答:第一组2.5小时能追上第二小组。

2.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨

想:根据甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨。若把乙仓存粮吨数看作1倍,总存粮吨数就是(4+1)倍,由此便可求出甲、乙两仓存粮吨数。

解:乙仓存粮:

(32.5×2+5)÷(4+1)

=(65+5)÷5

=70÷5

=14(吨)

甲仓存粮:

14×4-5

=56-5

=51(吨)

答:甲仓存粮51吨,乙仓存粮14吨。

3.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米

想:根据甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4+5)天修的。由此可求出乙队每天修的米数,进而再求两队每天共修的米数。

解:乙每天修的米数:

(400-10×4)÷(4+5)

=(400-40)÷9

=360÷9

=40(米)

甲乙两队每天共修的米数:

40×2+10=80+10=90(米)

答:两队每天修90米。

4.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元

想:已知每张桌子比每把椅子贵30元,如果桌子的单价与椅子同样多,那么总价就应减少30×6元,这时的总价相当于(6+5)把椅子的价钱,由此可求每把椅子的单价,再求每张桌子的单价。

解:每把椅子的价钱:

(455-30×6)÷(6+5)

=(455-180)÷11

=275÷11

=25(元)

每张桌子的价钱:

25+30=55(元)

答:每张桌子55元,每把椅子25元。

5.一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米

想:根据已知的两车的可求差,根据两车的差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程。

解:(7+65)×[40÷(75-65)]

=140×[40÷10]

=140×4

=560(千米)

答:甲乙两地相距560千米。

2.初中奥数试题精选及答案

1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元

想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱。

解:一把椅子的价钱:

288÷(10-1)=32(元)

一张桌子的价钱:

32×10=320(元)

答:一张桌子320元,一把椅子32元。

2、3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克

想:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。

解:45+5×3

=45+15

=60(千克)

答:3箱梨重60千克。

3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙快,甲每小时比乙快多少千米

想:根据在距离中点4千米处相遇和甲比乙快,可知甲比乙多走4×2千米,又知经过4小时相遇。即可求甲比乙每小时快多少千米。

解:4×2÷4

=8÷4

=2(千米)

答:甲每小时比乙快2千米。

4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。每支铅笔多少钱

想:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。

解:0.6÷[13-(13+7)÷2]

=0.6÷[13-20÷2]

=0.6÷3

=0.2(元)

答:每支铅笔0.2元。

5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米(交换乘客的时间略去不计)

想:根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。根据两车的和行驶的时间可求两车行驶的总路程。

解:下午2点是14时。

往返用的时间:14-8=6(时)

两地间路程:(40+45)×6÷2

=85×6÷2

=255(千米)

答:两地相距255千米。

3.初中奥数试题精选及答案

1.一桶油连桶重16千克,用去一半后,连桶重9千克,桶重多少千米

想:由已知条件可知,16千克和9千克的差正好是半桶油的重量。9千克是半桶油和桶的重量,去掉半桶油的重量就是桶的重量。

解:9-(16-9)

=9-7

=2(千克)

答:桶重2千克。

2.一桶油连桶重10千克,倒出一半后,连桶还重5.5千克,原来有油多少千克

想:由已知条件可知,10千克与5.5千克的差正好是半桶油的重量,再乘以2就是原来油的重量。

解:(10-5.5)×2=9(千克)

答:原来有油9千克。

3.用一只水桶装水,把水加到原来的2倍,连桶重10千克,如果把水加到原来的5倍,连桶重22千克。桶里原有水多少千克

想:由已知条件可知,桶里原有水的(5-2)倍正好是(22-10)千克,由此可求出桶里原有水的重量。

解:(22-10)÷(5-2)

=12÷3

=4(千克)

答:桶里原有水4千克。

4.小红和小华共有故事书36本。如果小红给小华5本,两人故事书的本数就相等,原来小红和小华各有多少本

想:从“小红给小华5本,两人故事书的本数就相等”这一条件,可知小红比小华多(5×2)本书,用共有的36本去掉小红比小华多的本数,剩下的本数正好是小华本数的2倍。

解:小华有书的本数:

(36-5×2)÷2=13(本)

小红有书的本数:

13+5×2=23(本)

答:原来小红有23本,小华有13本。

5.有5桶油重量相等,如果从每只桶里取出15千克,则5只桶里所剩下油的重量正好等于原来2桶油的重量。原来每桶油重多少千克

想:由已知条件知,5桶油共取出(15×5)千克。由于剩下油的重量正好等于原来2桶油的重量,可以推出(5-2)桶油的重量是(15×5)千克。

解:15×5÷(5-2)=25(千克)

答:原来每桶油重25千克。

4.初中奥数试题精选及答案

1.某筑路队承担了修一条公路的任务。原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。这条公路全长多少米

想:根据计划每天修720米,这样实际提前的长度是(720×3-1200)米。根据每天多修80米可求已修的天数,进而求公路的全长。

解:已修的天数:

(720×3-1200)÷80

=960÷80

=12(天)

公路全长:

(720+80)×12+1200

=800×12+1200

=9600+1200

=10800(米)

答:这条公路全长10800米。

2.某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱。如果3个纸箱加2个木箱装的鞋同样多。每个纸箱和每个木箱各装鞋多少双

想:根据已知条件,可求12个纸箱转化成木箱的个数,先求出每个木箱装多少双,再求每个纸箱装多少双。

解:12个纸箱相当木箱的个数:

2×(12÷3)=2×4=8(个)

一个木箱装鞋的双数:

1800÷(8+4)=18000÷12=150(双)

一个纸箱装鞋的双数:

150×2÷3=100(双)

答:每个纸箱可装鞋100双,每个木箱可装鞋150双.

3.某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋

想:由已知条件可知道,每天用去30袋水泥,同时用去30×2袋沙子,才能同时用完。但现在每天只用去40袋沙子,少用(30×2-40)袋,这样才累计出120袋沙子。因此看120袋里有多少个少用的沙子袋数,便可求出用的天数。进而可求出沙子和水泥的总袋数。

解:水泥用完的天数:

120÷(30×2-40)=120÷20=6(天)

水泥的总袋数:

30×6=180(袋)

沙子的总袋数:

180×2=360(袋)

答:运进水泥180袋,沙子360袋。

4.学校里买来了5个保温瓶和10个茶杯,共用了90元钱。每个保温瓶是每个茶杯价钱的4倍,每个保温瓶和每个茶杯各多少元

想:根据每个保温瓶的价钱是每个茶杯的4倍,可把5个保温瓶的价钱转化为20个茶杯的价钱。这样就可把5个保温瓶和10个茶杯共用的90元钱,看作30个茶杯共用的钱数。

解:每个茶杯的价钱:

90÷(4×5+10)=3(元)

每个保温瓶的价钱:

3×4=12(元)

答:每个保温瓶12元,每个茶杯3元。

5.两个数的和是572,其中一个加数个位上是0,去掉0后,就与第二个加数相同。这两个数分别是多少

想:已知一个加数个位上是0,去掉0,就与第二个加数相同,可知第一个加数是第二个加数的10倍,那么两个加数的和572,就是第二个加数的(10+1)倍。

解:第一个加数:

572÷(10+1)=52

第二个加数:

52×10=520

答:这两个加数分别是52和520。

5.初中奥数试题精选及答案

1.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。运后结算时,共付运费4400元。托运中损坏了多少箱玻璃

想:根据已知托运玻璃250箱,每箱运费20元,可求出应付运费总钱数。根据每损坏一箱,不但不付运费还要赔偿100元的条件可知,应付的钱数和实际付的钱数的差里有几个(100+20)元,就是损坏几箱。

解:(20×250-4400)÷(10+20)

=600÷120

=5(箱)

答:损坏了5箱。

2.五年级一中队和二中队要到距学校20千米的地方去春游。第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队

想:因第一中队早出发2小时比第二中队先行4×2千米,而每小时第二中队比第一中队多行(12-4)千米,由此即可求第二中队追上第一中队的时间。

解:4×2÷(12-4)

=4×2÷8

=1(时)

答:第二中队1小时能追上第一中队。

3.某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。这堆煤有多少千克

想:由已知条件可知道,前后烧煤总数量相差(1500+1000)千克,是由每天相差(1500-1000)千克造成的,由此可求出原计划烧的天数,进而再求出这堆煤的数量。

解:原计划烧煤天数:

(1500+1000)÷(1500-1000)

=2500÷500

=5(天)

这堆煤的重量:

1500×(5-1)

=1500×4

=6000(千克)

答:这堆煤有6000千克。

4.妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱。结果小红却买了8支铅笔和5本练习本,找回0.45元。求一支铅笔多少元

想:小红打算买的铅笔和本子总数与实际买的铅笔和本子总数量是相等的,找回0.45元,说明(8-5)支铅笔当作(8-5)本练习本计算,相差0.45元。由此可求练习本的单价比铅笔贵的钱数。从总钱数里去掉8个练习本比8支铅笔贵的钱数,剩余的则是(5+8)支铅笔的钱数。进而可求出每支铅笔的价钱。

解:每本练习本比每支铅笔贵的钱数:

0.45÷(8-5)=0.45÷3=0.15(元)

8个练习本比8支铅笔贵的钱数:

0.15×8=1.2(元)

每支铅笔的价钱:

(3.8-1.2)÷(5+8)=2.6÷13=0.2(元)

也可以用方程解:

设一枝铅笔X元,则一本练习本为元。

8X+5×=3.8-0.45

64X+19-25X=30.4-3.6

39X=7.8

X=0.2

答:每支铅笔0.2元。

5.学校组织外出参观,参加的师生一共360人。一辆大客车比一辆卡车多载10人,6辆大客车和8辆卡车载的人数相等。都乘卡车需要几辆都乘大客车需要几辆

想:根据一辆客车比一辆卡车多载10人,可求6辆客车比6辆卡车多载的人数,即多用的(8-6)辆卡车所载的人数,进而可求每辆卡车载多少人和每辆大客车载多少人。

解:卡车的数量:

360÷[10×6÷(8-6)]

=360÷[10×6÷2]

=360÷30

=12(辆)

客车的数量:

360÷[10×6÷(8-6)+10]

=360÷[30+10]

=360÷40

=9(辆)

答:可用卡车12辆,客车9辆。

初二年级奥数与三角形有关的角试题及答案

【 #初中奥数# 导语】奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。奥数对青少年的脑力锻炼有着一定的作用,可以通过奥数对思维和逻辑进行锻炼,对学生起到的并不仅仅是数学方面的作用,通常比普通数学要深奥一些。下面是 为大家带来的初二年级奥数与三角形有关的角试题及答案,欢迎大家阅读。

1.填空:

(1)三角形的内角和性质是__.

(2)三角形的内角和性质是利用平行线的与的定义,通过推理得到的.它的推理过程如下:

已知:△ABC,

求证:∠BAC+∠ABC+∠ACB=.

证明:过A点作∥,

则∠EAB=,∠FAC=.

(__,__)

∵∠EAF是平角,

∴∠EAB++=180°.( )

∴∠ABC+∠BAC+∠ACB=∠EAB+∠+∠.( )

即∠ABC+∠BAC+∠ACB=.

2.填空:

(1)三角形的一边与__叫做三角形的外角.

因此,三角形的任意一个外角与和它相邻的三角形的一个内角互为.

(2)利用“三角形内角和”性质,可以得到三角形的外角性质

如图,∵∠ACD是△ABC的外角,

∴∠ACD与∠ACB互为,

即∠ACD=180°-∠ACB.①

又∵∠A+∠B+∠ACB=,

∴∠A+∠B=.②

由①、②,得∠ACD=+.

∴∠ACD>∠A,∠ACD>∠B

由上述(2)的说理,可以得到三角形外角的性质如下:

三角形的一个外角等于_.

三角形的一个外角大于_.

3.(1)已知:如图,∠1、∠2、∠3分别是△ABC的外角,

求:∠1+∠2+∠3.

(2)结论:三角形的外角和等于.

4.已知:如图,BE与CF相交于A点,试确定∠B+∠C与∠E+∠F之间的大小关系,并说明你的理由.

5.已知:如图,CE⊥AB于E,AD⊥BC于D,∠A=30°,求∠C的度数.

6.依据题设,写出结论,想一想,为什么

已知:如图,△ABC中,∠ACB=90°,则:

(1)∠A+∠B=.即∠A与∠B互为;

(2)若作CD⊥AB于点D,可得∠BCD=∠,∠ACD=∠.

参考答案

1.(1)三角形的内角和等于180°,(2)性质、平角,说理过程(略)

2.略.

3.∠1+∠2+∠3=360°,360°.

4.∠B+∠C=∠E+∠F.(此图中的结论为常用结论) 5.30°

6.(1)90°,余角,(2)∠A,∠B

精选初三奥数题大全(5篇)

【 #初中奥数# 导语】奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。奥数体现了数学与奥林匹克体育运动精神的共通性:更快、更高、更强。下面是 分享的精选初三奥数题大全(5篇)。欢迎阅读参考!

1.精选初三奥数题大全 篇一

1、小王、小李同住一楼中,两人从家去上班,小王先走20分钟后小李才出发。已知小李的是小王的3倍,则小李出发后多少时间能追上小王?

2、甲每分钟行80米,乙每分钟行50米,在下午1:30分时,两人在同地背向而行了6分钟,甲又调转方向追乙,则甲在几点的时候追上乙?

3、某学校组织学生去长城春游,租用了一辆大客车,从学校到长城相距150千米。大客车和学校的一辆小汽车同时从学校出发,当小汽车到长城时,大客车还有30千米。已知大客车每小时行60千米,则小汽车比大客车快多少千米?

4、甲乙两人从周长为800米的正方形水池相对的两个顶点同时出发逆时针行走,乙在前,甲在后。甲每分钟走50米,乙每分钟走46米,出发多长时间甲和乙在同一点上?

5、甲、乙两人同时从东村出发到西村,甲的是每小时6千米,乙的是每小时4千米,甲中途有事休息了2小时,结果比乙迟到了1个小时,求两村相隔的距离?

2.精选初三奥数题大全 篇二

1、甲、乙两班同学参加“绿化祖国”活动,已知乙班每小时比甲班多种2棵树,甲班种60棵树所用的时间与乙班种66棵树所用的时间相等,求甲乙两班每小时各种多少棵树?

2、某市为了缓解交通拥堵现象,决定修建一条市中心到飞机场的轻轨铁路,为使工程提前3个月完成,需要将原定的工作效率提高12℅,问原计划完成这项工程需用多个月?

3、某项工程在工程招标时,接到甲、乙两个工程队投标书,施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元,工程领导小组根据甲乙两的投标书预算,有如下方案:

(1)甲队单独完成这项工程刚好如期成完成;

(2)乙队单独完成这项工程要比规定的日期多用6天;

(3)若甲乙两合做3天,余下的的工程由乙队单独做也正好如期完成.

那么在不耽误工期的前提下,你觉得那一种施工方案最节省工程款请说明理由.

4、据林业专家分析,树叶在光合作用下产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用,已知一片银杏树叶一年的平均滞尘量比一片国槐叶一年的平均滞尘量的2倍少4毫克,若每年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年平均滞尘量。

5、八(1)班同学周末乘汽车到游览区游览,游览区距学校120千米,一部分学生乘慢车先行,出发后1小时后,另一部分学生乘快车前往,结果他们同时到达游览区,已知快车的是快车的的1.5倍,求快车的.

3.精选初三奥数题大全 篇三

1、人民机械厂加工一批零件,甲车间加工这批零件的20%,乙车间加工余下的25%,丙车间加工再余下的40%,还剩下3600个没加工,这批零件共有多少个?

2、庆丰文具店运来的毛笔比钢笔多1万支,其中毛笔的3/7与钢笔的1/2支数相同,庆丰文具店共运来多少万支笔?

3、四个孩子合买一只60元的小船。第一个孩子付的钱是其他孩子付的总钱数的一半,第二个孩子付的钱是其他孩子付的总钱数的三分之一,第三个孩子付的钱是其他孩子付的总钱数的四分之一,第四个孩子付多少钱?

4、煤气收款员到一幢楼里收煤气差价款,他走出楼时一算,没交款的户数占已交款户数的1/8。如果少收2户,则没交款的户数恰好占已交款户数的1/6,这幢楼有多少住户?

5、某车间生产甲、乙两种零件。生产的甲种零件比乙种零件多12个,乙种零件全部合格,甲种零件只有4/5合格,两种零件合格的一共是42个,两种零件共生产多少个?

4.精选初三奥数题大全 篇四

1、甲、乙两人同时分别从两地骑车相向而行。甲每小时行20千米,乙每小时行18千米。两人相遇时距全程中点3千米。问全程长多少米?

2、两地相距900千米,甲走需15天,乙走需12天。现在甲先出发2天,乙去追甲。问要走多少千米才可追上?

3、甲、乙两人分别在相距240千米的A、B两地乘车出发,相向而行,5小时相遇。如果甲、乙两人乘原来的车分别在两城同时同向出发,慢车在前,快车在后,15小时后,甲、乙两人相遇。求各车的。

4、甲轮船以每小时平均16千米的由一码头出发,经过3小时,乙轮船也由同一码头按照同一方向出发,再经过12小时追上甲轮船。求乙轮船的。

5、甲有120元钱,乙有96元钱。甲每天用15元,乙每天用9元。多少天之后,两人剩下的钱数相等?

6、小王骑摩托车由甲城到乙城要5小时。小李骑自行车由乙城到甲城要10小时。两人同时从两城相向开出,相遇时小王距离乙城还有192千米。求两城距离多少千米?

5.精选初三奥数题大全 篇五

1.甲、乙合作完成一项工作,由于配合的好,甲的工作效率比单独做时提高1/10,乙的工作效率比单独做时提高1/5,甲、乙合作6小时完成了这项工作,如果甲单独做需要11小时,那么乙单独做需要几小时?

2.A、B、C、D、E五名学生站成一横排,他们的手中共拿着20面小旗。现知道,站在C右边的学生共拿着11面小旗,站在B左边的学生共拿着10面小旗,站在D左边的学生共拿着8面小旗,站在E左边的学生共拿着16面小旗。五名学生从左至右依次是谁?各拿几面小旗?

3.小明在360米长的环行的跑道上跑了一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,问他后一半路程用了多少时间?

4.小英和小明为了测量飞驶而过的火车的长度和,他们拿了两块秒表,小英用一块表记下火车从他面前通过所花的时间是15秒,小明用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是18秒,已知两根电线杆之间的距离是60米,求火车的全长和。

5.小明从家到学校时,前一半路程步行,后一半路程乘车;他从学校到家时,前1/3时间乘车,后2/3时间步行。结果去学校的时间比回家的时间多20分钟,已知小明从家到学校的路程是多少千米?

精选初三奥数题大全(5篇)

【 #初中奥数# 导语】奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。奥数体现了数学与奥林匹克体育运动精神的共通性:更快、更高、更强。下面是 分享的精选初三奥数题大全(5篇)。欢迎阅读参考!

1.精选初三奥数题大全 篇一

1、小王、小李同住一楼中,两人从家去上班,小王先走20分钟后小李才出发。已知小李的是小王的3倍,则小李出发后多少时间能追上小王?

2、甲每分钟行80米,乙每分钟行50米,在下午1:30分时,两人在同地背向而行了6分钟,甲又调转方向追乙,则甲在几点的时候追上乙?

3、某学校组织学生去长城春游,租用了一辆大客车,从学校到长城相距150千米。大客车和学校的一辆小汽车同时从学校出发,当小汽车到长城时,大客车还有30千米。已知大客车每小时行60千米,则小汽车比大客车快多少千米?

4、甲乙两人从周长为800米的正方形水池相对的两个顶点同时出发逆时针行走,乙在前,甲在后。甲每分钟走50米,乙每分钟走46米,出发多长时间甲和乙在同一点上?

5、甲、乙两人同时从东村出发到西村,甲的是每小时6千米,乙的是每小时4千米,甲中途有事休息了2小时,结果比乙迟到了1个小时,求两村相隔的距离?

2.精选初三奥数题大全 篇二

1、甲、乙两班同学参加“绿化祖国”活动,已知乙班每小时比甲班多种2棵树,甲班种60棵树所用的时间与乙班种66棵树所用的时间相等,求甲乙两班每小时各种多少棵树?

2、某市为了缓解交通拥堵现象,决定修建一条市中心到飞机场的轻轨铁路,为使工程提前3个月完成,需要将原定的工作效率提高12℅,问原计划完成这项工程需用多个月?

3、某项工程在工程招标时,接到甲、乙两个工程队投标书,施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元,工程领导小组根据甲乙两的投标书预算,有如下方案:

(1)甲队单独完成这项工程刚好如期成完成;

(2)乙队单独完成这项工程要比规定的日期多用6天;

(3)若甲乙两合做3天,余下的的工程由乙队单独做也正好如期完成.

那么在不耽误工期的前提下,你觉得那一种施工方案最节省工程款请说明理由.

4、据林业专家分析,树叶在光合作用下产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用,已知一片银杏树叶一年的平均滞尘量比一片国槐叶一年的平均滞尘量的2倍少4毫克,若每年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年平均滞尘量。

5、八(1)班同学周末乘汽车到游览区游览,游览区距学校120千米,一部分学生乘慢车先行,出发后1小时后,另一部分学生乘快车前往,结果他们同时到达游览区,已知快车的是快车的的1.5倍,求快车的.

3.精选初三奥数题大全 篇三

1、人民机械厂加工一批零件,甲车间加工这批零件的20%,乙车间加工余下的25%,丙车间加工再余下的40%,还剩下3600个没加工,这批零件共有多少个?

2、庆丰文具店运来的毛笔比钢笔多1万支,其中毛笔的3/7与钢笔的1/2支数相同,庆丰文具店共运来多少万支笔?

3、四个孩子合买一只60元的小船。第一个孩子付的钱是其他孩子付的总钱数的一半,第二个孩子付的钱是其他孩子付的总钱数的三分之一,第三个孩子付的钱是其他孩子付的总钱数的四分之一,第四个孩子付多少钱?

4、煤气收款员到一幢楼里收煤气差价款,他走出楼时一算,没交款的户数占已交款户数的1/8。如果少收2户,则没交款的户数恰好占已交款户数的1/6,这幢楼有多少住户?

5、某车间生产甲、乙两种零件。生产的甲种零件比乙种零件多12个,乙种零件全部合格,甲种零件只有4/5合格,两种零件合格的一共是42个,两种零件共生产多少个?

4.精选初三奥数题大全 篇四

1、甲、乙两人同时分别从两地骑车相向而行。甲每小时行20千米,乙每小时行18千米。两人相遇时距全程中点3千米。问全程长多少米?

2、两地相距900千米,甲走需15天,乙走需12天。现在甲先出发2天,乙去追甲。问要走多少千米才可追上?

3、甲、乙两人分别在相距240千米的A、B两地乘车出发,相向而行,5小时相遇。如果甲、乙两人乘原来的车分别在两城同时同向出发,慢车在前,快车在后,15小时后,甲、乙两人相遇。求各车的。

4、甲轮船以每小时平均16千米的由一码头出发,经过3小时,乙轮船也由同一码头按照同一方向出发,再经过12小时追上甲轮船。求乙轮船的。

5、甲有120元钱,乙有96元钱。甲每天用15元,乙每天用9元。多少天之后,两人剩下的钱数相等?

6、小王骑摩托车由甲城到乙城要5小时。小李骑自行车由乙城到甲城要10小时。两人同时从两城相向开出,相遇时小王距离乙城还有192千米。求两城距离多少千米?

5.精选初三奥数题大全 篇五

1.甲、乙合作完成一项工作,由于配合的好,甲的工作效率比单独做时提高1/10,乙的工作效率比单独做时提高1/5,甲、乙合作6小时完成了这项工作,如果甲单独做需要11小时,那么乙单独做需要几小时?

2.A、B、C、D、E五名学生站成一横排,他们的手中共拿着20面小旗。现知道,站在C右边的学生共拿着11面小旗,站在B左边的学生共拿着10面小旗,站在D左边的学生共拿着8面小旗,站在E左边的学生共拿着16面小旗。五名学生从左至右依次是谁?各拿几面小旗?

3.小明在360米长的环行的跑道上跑了一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,问他后一半路程用了多少时间?

4.小英和小明为了测量飞驶而过的火车的长度和,他们拿了两块秒表,小英用一块表记下火车从他面前通过所花的时间是15秒,小明用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是18秒,已知两根电线杆之间的距离是60米,求火车的全长和。

5.小明从家到学校时,前一半路程步行,后一半路程乘车;他从学校到家时,前1/3时间乘车,后2/3时间步行。结果去学校的时间比回家的时间多20分钟,已知小明从家到学校的路程是多少千米?